ALZHEIMER'S RESEARCH PEPTIDES BACHEM EIDHERING PARTNER FOR PEPTIDES

ALZHEIMER'S RESEARCH CATALOG PEPTIDES «TO REMEMBER»

BACHEM offers more than 3600 catalog peptides for different areas of interest and research topics including over 250 Alzheimer's related products available in our inventory. With a record of enduring success and over 45 years of experience in peptide synthesis we continue to be a leader in the peptide industry.

UNLABELED AMYLOID B-PEPTIDES Different Salts and HFIP-treated Amyloid β-Peptides

H-6466	Amyloid β-Protein (1-42) HCl	H-7432	Amyloid β-Protein (3-42) ammonium NEW
H-8146	Amyloid β -Protein (1-42) TFA NEW	H-4796	(Pyr³)-Amyloid β-Protein (3-42) ammonium
H-7404	Amyloid β -Protein (1-42) sodium salt NEW	H-8248	(Pyr³)-Amyloid β-Protein (3-42) TFA
H-7442	Amyloid β -Protein (1-42) HFIP-treated	H-7434	Amyloid β -Protein (4-42) ammonium NEW
H-5568	Amyloid β-Protein (1-40) HCl	H-7436	Amyloid β -Protein (5-42) ammonium NEW
H-1194	Amyloid β-Protein (1-40) TFA	H-6366	Amyloid β-Protein (6-20) TFA
H-7438	Amyloid β -Protein (1-40) HFIP-treated	H-6384	Amyloid β-Protein (10-35) TFA
H-7664	Amyloid β -Protein (1-40) amide TFA NEW	H-7668	Amyloid β -Protein (11-42) TFA NEW
H-7458	Amyloid β -Protein (1-39) TFA	H-3682	Amyloid β-Protein (16-20) TFA
H-2966	Amyloid β -Protein (1-38) TFA	H-8092	Amyloid β -Protein (16-22) TFA NEW
H-7462	Amyloid β -Protein (1-37) TFA	H-7532	Amyloid β -Protein (17-40) TFA NEW
H-7865	Amyloid β -Protein (1-28) TFA	H-3808	Amyloid β-Protein (20-29) TFA
H-7656	Amyloid β -Protein (1-24) TFA	H-1192	Amyloid β-Protein (25-35) TFA
H-2958	Amyloid β -Protein (1-16) TFA	H-4222	Amyloid β -Protein (25-35) amide TFA
H-6368	Amyloid β -Protein (1-15) TFA	H-7728	Amyloid β-Protein (40-1) HCl NEW
H-7372	Amyloid β -Protein (1-14) TFA	H-2972	Amyloid β-Protein (40-1) TFA
H-2956	Amyloid β -Protein (1-11) TFA	H-5572	Amyloid β-Protein (33-42) TFA
H-7472	Amyloid β -Protein (2-42) TFA NEW	H-2964	Amyloid β-Protein (35-25) TFA
H-7672	Amyloid β -Protein (3-40) TFA NEW		

For your convenience we have synthesized different salts of Amyloid $\beta\mbox{-}Proteins:$

OUR PRODUCT MONOGRAPHS PROVIDE ADDITIONAL INFORMATION.

UNLABELED AMYLOID β-PEPTIDES Fragments of Different Lengths

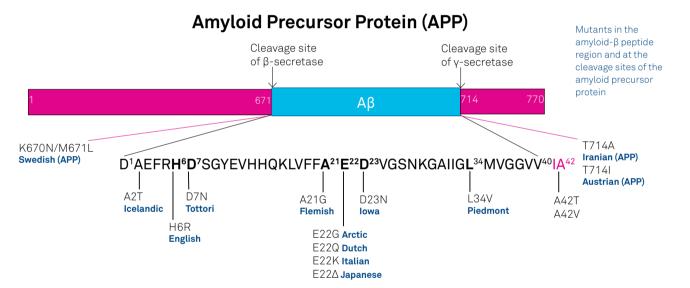
Cleavage of amyloid precursor protein (APP) by β- and γ-secretases yields amyloid β peptides. Aβ (1-40) and the more virulent Aβ (1-42) are the most important APP degradation products. Aβ (1-42), a 42-residue fragment of APP, has been found to be a major constituent of the senile plaques formed in the brains of patients with Alzheimer's disease (AD) and late Down's syndrome. Aβ (1-42) readily forms neurotoxic oligomers at physiological pH. The sequence of H-1368/H-6466/H-7404/H-8146 corresponds to the human, bovine, canine, feline, ovine, guinea pig, and rabbit Aβ42 peptide. The peptide has been used to detect amyloid β-protein multimers in the cerebrospinal fluid of Alzheimer's disease patients through fluorescence correlation spectroscopy.

H-6406	Amyloid β-Protein (1-46)	H-6366	Amyloid β-Protein (6-20)
H-1586	Amyloid β-Protein (1-43)	H-1388	Amyloid β-Protein (10-20)
H-1368 H-6466 H-8146 H-7404	Amyloid β-Protein (1-42) Amyloid β-Protein (1-42) hydrochloride salt Amyloid β-Protein (1-42) trifluoroacetate salt NEW Amyloid β-Protein (1-42) sodium salt NEW	H-6384	Amyloid β-Protein (10-35)
H-1194 H-5568	Amyloid β -Protein (1-40) trifluoroacetate salt Amyloid β -Protein (1-40) hydrochloride salt	H-6382	(Pyr¹¹)-Amyloid β-Protein (11-40)
H-7458	Amyloid β-Protein (1-39)	H-7668	Amyloid β-Protein (11-42) NEW
H-2966	Amyloid β-Protein (1-38)	H-7910	Amyloid β-Protein (12-28)
H-7462	Amyloid β-Protein (1-37)	H-3945	(Leu ¹⁶)-Amyloid β-Protein (16-19)
H-7865	Amyloid β-Protein (1-28)	H-3682	Amyloid β-Protein (16-20)
H-7656	Amyloid β-Protein (1-24)	H-8092	Amyloid β-Protein (16-22) NEW
H-2958	Amyloid β-Protein (1-16)	H-7532	Amyloid β-Protein (17-40) NEW
H-6368	Amyloid β-Protein (1-15)	H-3808	Amyloid β-Protein (20-29)
H-7372	Amyloid β-Protein (1-14)	H-1976	Amyloid β-Protein (22-35)
H-2956	Amyloid β-Protein (1-11)	H-1192	Amyloid β-Protein (25-35)
H-7472	Amyloid β -Protein (2-42) NEW	H-4222	Amyloid β -Protein (25-35) amide
H-7672	Amyloid β-Protein (3-40) NEW	H-3984	Amyloid β-Protein (29-40)
H-7422	(Pyr³)-Amyloid β-Protein (3-40)	H-5866	Amyloid β-Protein (31-35)
H-7432	Amyloid β-Protein (3-42) NEW	H-5572	Amyloid β-Protein (33-42)
H-4796 H-8248	(Pyr³)-Amyloid β-Protein (3-42) ammonium salt (Pyr³)-Amyloid β-Protein (3-42) trifluoroacetate salt NEW	H-5270	Amyloid β-Protein (36-38)
H-7434	Amyloid β-Protein (4-42) NEW	H-3500	Amyloid β -Protein (37-39)
H-7436	Amyloid β-Protein (5-42) NEW		

Unlabeled Amyloid β -Peptides (mouse, rat)

H-5966	Amyloid β -Protein (1-42) mouse, rat	H-5638	Amyloid β -Protein (1-40) mouse, rat
--------	--	--------	--

«BACHEM IS OUR NUMBER ONE CHOICE IN PEPTIDE QUALITY AND SECOND TO NONE IN CUSTOMER SERVICE AND COMMUNICATION.»


AMYLOID β-PEPTIDES Reverse and Scrambled Sequences, all-D Version

The reverse or scrambled Aβ peptides can be used as a negative control in order to test for toxicity on your favorite cells.

H-3976	Amyloid β -Protein (42-1), reverse sequence of A β (1-42) (H-1386, H-6466, H-8146), inactive control for A β	H-2972	Amyloid β -Protein (40-1), reverse sequence of A β (1-40), an inactive control for H-1194 and H-5568
		H-7728	Amyloid β -Protein (40-1) hydrochloride salt NEW
H-7406	Amyloid β -Protein (1-42) (scrambled) NEW	H-7408	Amyloid β -Protein (1-40) (scrambled) NEW
H-5566	ent- Amyloid β -Protein (1-42), all-D A β (1-42)	H-2964	Amyloid β -Protein (35-25) , reverse sequence of A β 25-35 (H-1192), inactive control

ΑΜΥLOID β-PROTEIN MUTANTS

A number of mutations within the APP gene have been detected in families with an inherited risk for early onset of AD. Usually, they are named after the region, in which they have been detected. A selection of relevant mutations in the Aβ region of APP that we offer is presented below.

Catalog Number	Exchanged in APP	Position in Aβ	Designation
H-7336	H677R	H6R	English
H-7334	D678N	D7N	Tottori
H-6702	A692G	A21G	Flemish
H-6694, H-6124 ¹	E693G	E22G	Arctic
H-6696	E693Q	E22Q	Dutch
H-6698	E693K	E22K	Italian
H-7474 NEW, H-7686 NEW ¹	E693∆	E22Δ	Osaka
H-7412	E693Q/D694N	E22Q/D23N	Dutch/Iowa
H-7332	D694N	D23N	Iowa
H-7414	L705V	L34V	Piedmont
H-6432	E674R	E3R	
H-6434	G680Q	G9Q	
H-7662 NEW	H684R	H13R	
H-6446 ¹	F691E	F20E	

H-7402 NEW, H-7418 NEW	S697C	S26C	
H-8296 ² NEW	A673V	A2V	
H-6448 ¹	L688R	L17R	
H-2362 ³	E682Q	E11Q	
H-6386 ⁴	K699G/A701C	K28G/A30C	

All Aβ (1-40) except for: ¹Aβ (1-42), ²Aβ (1-6), ³Aβ (1-28), ⁴Aβ (1-30) amide. H-7418 is the dimer of H-7402.

The English (H6R) mutation and the Tottori (D7N) mutation of β-amyloid peptides accelerate fibrillation without increasing protofibril formation. Ono et al. (J. Biol. Chem. 285, 23186 (2010)) showed that the English and Tottori mutations alter Aβ assembly at its earliest stages, monomer folding and oligomerization, and produce oligomers that are more toxic to cultured neuronal cells than are wild type oligomers. The exchange of His⁶ by Arg influences the structure of the Cu(II) complex formed by Aβ peptides. Contrary to β-amyloid peptides mutated at position 22 (Dutch, Italian, Arctic mutants), the Flemish mutation (A21G) shows a decreased tendency to aggregate and a reduced neurotoxicity. In the studies of Betts and Tsubuki, A21G was degraded significantly more slowly by neprilysin than the wild-type Aβ (1-40) and the E22 mutants. The relative resistance to proteolytic degradation may account for the pathogenicity of the Aβ mutant.

The highly neurotoxic arctic mutant (E22G) of A β has been used to study the mechanisms underlying the formation of soluble and insoluble β -amyloid aggregates. As the wild-type A β , the arctic mutant preferably assembles in the presence of GM1 ganglioside. The Dutch mutation (E22Q) of amyloid β -peptide aggregates more readily than the wild-type peptide and the resulting fibrils show increased neurotoxicity. The mutant peptide E22Q induced apoptosis of cerebral endothelial cells at a concentration of 25 μ m, whereas wild-type A β (1-40) and the Italian mutant E22K showed no effect.

The Italian mutation of β-amyloid (1-40) (E22K) aggregates more rapidly than the wild-type sequence 1-40. It showed increased neurotoxicity, which (according to a solid-phase NMR-study of Masuda et al. (Bioorg. Med. Chem. 13, 6803 (2005)) may be due to the salt bridge formed between Lys²² and Asp²³ in the minor conformer. As the Arctic, Flemish, and Dutch mutants, the Italian mutant is degraded considerably more slowly than wild-type Aβ by neprilysin.

The Iowa (D23N) mutant of Aβ 40 assembles in solution considerably more rapidly to form fibrils than the wild-type Aβ sequence. These fibrils also show a different structure, which could be responsible for their increased toxicity.

SHOP.BACHEM.COM

MODIFIED AMYLOID β-PEPTIDES

H-5888	(Met(O) ³⁵)-Amyloid β-Protein (1-42)	H-4984	(Asn(4-aminobutyl) ^{1.7.23} ,Gln(4-aminobutyl) ^{3.11.22})- Amyloid β-Protein (1-40)
H-7324	(Met(O₂)³⁵)-Amyloid β-Protein (1-42)	H-2962	(Met(O)³₅)-Amyloid β-Protein (25-35)
H-7308	(Nle ³⁵)-Amyloid β-Protein (1-42)	H-7314	(Nle³5)-Amyloid β-Protein (25-35)
H-6388	Cys-Gly-Lys-Arg-Amyloid β -Protein (1-42)	H-6372	Cys-Gly-Lys-Lys-Gly-Amyloid β-Protein (33-40)
H-4854	(D-Asp¹)-Amyloid β-Protein (1-42)	H-6364	Cys-Gly-His-Gly-Asn-Lys-Ser-Amyloid β-Protein (33-40)
H-7312	(Nle ³⁵)-Amyloid β-Protein (1-40)	H-6378	Cys-Gly-Lys-Lys-Gly-Amyloid β-Protein (35-40)
H-7368	(Cysº)-Amyloid β-Protein (1-40)		

MODIFIERS OF AB AGGREGATION

H-3684	Acetyl-Amyloid β -Protein (15-20) amide	H-6074	ent-[Amyloid β-Protein (20-16)]-β-Ala-D-Lys(ent- [Amyloid β-Protein (16-20)])
H-4062	(Lys¹₅)-Amyloid β-Protein (15-21)	H-7658	Acetyl-(N-Me-Leu ¹⁷ ,N-Me-Phe ¹⁹)-Amyloid β-Protein (16-20) amide NEW
H-3904	(Arg ¹⁵ ,Asp ^{16.25} ,Pro ^{18.21.23} ,Val ²² ,Ile ²⁴)-Amyloid β-Protein (15-25)	H-8092	Amyloid β-Protein (16-22) NEW
H-3978	Gly-Amyloid β-Protein (15-25)-Gly-ε- aminocaproyl(-Lys) ₆	H-4876	(Pro¹ ⁸ ,Asp²¹)-Amyloid β-Protein (17-21)
H-3682	Amyloid β-Protein (16-20)	H-6138	Acetyl-(Pro ¹⁸ ,Asp ²¹)-Amyloid β -Protein (17-21) amide

Αβ ANTAGONIST

H-4124 Propionyl-Amyloid β-Protein (31-34) amide

LABELED AMYLOID β-PEPTIDES

The following peptides can be used in A β -protein binding studies:

H-5642	Biotin Amyloid β-Protein (1-42)	H-5914	Biotin Amyloid β-Protein (1-40)
H-7454	Biotin LC-Amyloid β-Protein (1-42)	H-7456	Biotin LC-Amyloid β-Protein (1-40) NEW
H-7444	5-FAM-Amyloid β-Protein (1-42)	H-7446	5-FAM-Amyloid β-Protein (1-40)
M-2585	FITC β -Ala Amyloid β -Protein (1-42)	H-6326	FITC β -Ala Amyloid β -Protein (1-40)
H-7666	FITC LC-Amyloid β-Protein (1-42) NEW	H-7452	5-TAMRA Amyloid β-Protein (1-40)
H-7448	5-TAMRA Amyloid β-Protein (1-42)		

For your benefit and convenience, we offer the most frequently studied amyloid β -protein fragments, A β (1-42) (H-1368/H-6466/H-8146) and A β (1-40) (H-1194), in 0.1 mg, 0.5 mg, 1 mg, and 5 mg packages. Additionally, 10 mg and 25 mg packages of all three A β (1-42) products are available from stock. Larger quantities can be quoted upon request.

Amyloid β -protein (1-40) that is N-terminally modified with the fluorescent dye (7-diethylaminocoumarin-3-yl)carbonyl (DAC or DEAC) can be utilized to assess the binding properties of amyloid β -protein (1-40) for various membranes since it behaves very similar to the native peptide. In aqueous environments the fluorophore is almost non-fluorescent whereas binding to membranes results in an increase in fluorescence intensity (λ_{ex} = 430 nm, λ_{em} = 470 nm). Increases in the GM1 ganglioside and cholesterol content in the lipid bilayers facilitated the binding of this peptide. For phosphatidylcholine and phosphatidylserine no affinity was observed:

FRET SUBSTRATES

M-2565	Abz-(Asn ⁶⁷⁰ ,Leu ⁶⁷¹)-Amyloid β/A4 Protein Precur- sor ₇₇₀ (669-674)-EDDnp	Intramolecularly quenched fluorescent substrate containing the ortho-aminobenzoyl (Abz) / N-(2,4-dinitrophenyl) ethylene- diamine (EDDnp) groups as the donor / acceptor pair. It corres- ponds to the Swedish-mutated (JMV2236) β -amyloid precursor protein (β APP) sequence targeted by β -secretase BACE (β -site APP-cleaving activity). This FRET substrate is more selectively cleaved by BACE1 and BACE2 than by cathepsin D, a disintegrin and metalloprotease 10 (ADAM10), tumor necrosis α -converting enzyme (TACE), presenilin-1 (PS1), or presenilin-2 (PS2)
M-2560	Abz-Amyloid β/A4 Protein Precursor ₇₇₀ (669-674)-EDDnp	This FRET substrate is cleaved by BACE1, BACE2, and cathepsin D
M-2540	Abz-Amyloid β/A4 Protein Precursor ₇₇₀ (708-715)-Lys(Dnp)-D-Arg-D-Arg-D-Arg amide	A sensitive fluorogenic (FRET) substrate developed for the analysis of γ-secretase from post mortem non-Alzheimer's and Alzheimer's disease human brain isolates
M-2470	Arg-Glu(EDANS)-(Asn ⁶⁷⁰ ,Leu ⁶⁷¹)-Amyloid β/A4 Pro- tein Precursor ₇₇₀ (668-675)-Lys(DABCYL)-Arg	Fluorogenic (FRET) substrate for pro-memapsin-2 containing the β -secretase site EVNLDAEF of the Swedish mutation of APP. The kinetic parameters at pH 4.5 are Km = 5.4 μ M and kcat = 0.24 min ⁻¹
M-2435	DABCYL-(Asn ⁶⁷⁰ ,Leu ⁶⁷¹)-Amyloid β/A4 Protein Pre- cursor ₇₇₀ (667-675)-EDANS	A FRET substrate for β -Secretase corresponding to residues 667 to 674, SEVNLDAEF, of the Swedish double mutation (K670N/M671L) of APP. The sequence can also be cleaved by cathepsin D
M-2570	Lys(Dabsyl)-(Asn ⁶⁷⁰ ,Leu ⁶⁷¹)-Amyloid β/A4 Protein Precursor ₇₇₀ (667-676)-Gln-Lucifer Yellow	A highly selective substrate for measuring BACE1 (Km = 9 μ M, kcat = 0.02 s ⁻¹) and BACE2 activity. In this fluorescence resonance energy transfer (FRET) substrate the fluorescent group Lucifer Yellow is efficiently quenched by Dabsyl (4-(4-Dimethy-laminophenylazo)benzenesulfonyl). Enzymatic cleavage can be assayed by detecting the increase in fluorescence emission at 520 nm using an excitation wavelength of 430 nm

M-2420	Mca-(Asn ⁶⁷⁰ ,Leu ⁶⁷¹)-Amyloid β/A4 Protein Precur- sor ₇₇₀ (667-675)-Lys(Dnp)	M-2460	Mca-Amyloid β/A4 Protein Precursor ₇₇₀ (667-676)-Lys(Dnp)-Arg-Arg amide
M-2485	Mca-(Asn ⁶⁷⁰ ,Leu ⁶⁷¹)-Amyloid β/A4 Protein Precur- sor ₇₇₀ (667-675)-Lys(Dnp) amide	M-2555	N-Me-Abz-Amyloid β/A4 Protein Precursor ₇₇₀ (708-715)-Lys(Dnp)-D-Arg-D-Arg-D-Arg amide
M-2465	Mca-(Asn ⁶⁷⁰ ,Leu ⁶⁷¹)-Amyloid β/A4 Protein Precur- sor ₇₇₀ (667-676)-Lys(Dnp)-Arg-Arg amide		

AMYLOID β/A4 PROTEIN PRECURSOR770 (APP) FRAGMENTS

H-2232	Acetyl-Amyloid β/A4 Protein Precursor ₇₇₀ (96-110) (cyclized)	This cyclized peptide which is homologous to the heparin- binding domain of APP, binds strongly to heparin and inhibits binding of ¹²⁵ I-labeled APP to heparin (IC_{50} = 10 ⁻⁷ M). The peptide blocks the heparan sulfate proteoglycan-dependent stimulatory effect of APP on neurite outgrowth
H-3726	Amyloid β/A4 Protein Precursor ₇₇₀ (135-155)	The APP fragment FLHQERMDVCETHLHWHTVAK comprises a copper(II)-binding site. Binding of Cu(II) to the peptide induced oxidation of the cysteine and intermolecular dimerization of the peptide. The reduction of Cu(II) to Cu(I) by APP may enhance the production of hydroxyl radicals which in turn may contribute to neurodegeneration in Alzheimer's disease
H-2594	Amyloid β/A4 Protein Precursor ₇₇₀ (394-410)	The 17-mer peptide AKERLEAKHRERMSQVM is capable of redu- cing the neurologic damage <i>in vivo</i> in a model of central ner- vous system ischemia, possibly through its effect on synaptic plasticity
H-1608	Amyloid β/A4 Protein Precursor ₇₇₀ (403-407)	The growth-promoting activity of the secreted form of amyloid β /A4 protein precursor (sAPP-695) on fibroblasts is represented by the fragment RERMS which seems to be the only site of sAPP-695 involved in the growth stimulation. It has been suggested that RERMS is also involved in the pathogenesis of Alzheimer's disease
N-1850	Amyloid β/A4 Protein Precursor ₇₇₀ (586-595) (human, mouse, rat)	Amyloid $\beta/A4$ Protein Precursor ₇₇₀ (586-595) (human, mouse, rat) also known as APP-derived inhibitory peptide (APP-IP), efficiently inhibited the activity of gelatinase A (matrix metalloprote-inase-2 (MMP-2)) (IC ₅₀ = 30 nM), whereas its inhibitory activity towards membrane type 1-matrix metalloproteinase was much weaker (IC ₅₀ = 2 μ M). The decapeptide ISYGNDALMP had poor inhibitory activity towards gelatinase B, matrilysin or stromelysin (IC ₅₀ > 10 μ M). APP-IP is likely an active site-directed inhibitor of gelatinase A. Clarification of its mode of action might provide a lead for the design of novel anti-cancer drugs that block specific processes of tumor invasion and angiogenesis
H-4836	(Asn ⁶⁷⁰ ,Leu ⁶⁷¹)-APP ₇₇₀ (667-675), APP ₇₇₀ (667-675) Swedish Mutation	SEVNLDAEF corresponds to the mutant junctional sequence of the amyloid precursor protein (APP) found in a Swedish family with early-onset Alzheimer's disease, therefore referred to as the ,Swedish' mutation (K670N/M671L). The peptide has been used for assaying cleavage at leucine-aspartate by cathepsin G and chymotrypsin, whereas neither cathepsin B, D nor L genera- ted any products
H-4842	Amyloid β/A4 Protein Precursor ₇₇₀ (667-676)	The peptide substrate APP (667-676), SEVKMDAEFR, corresponds to the wild-type amyloid precursor protein (APP) β -secretase cleavage site. SEVKMDAEFR has been used for assaying β -secretase activity
H-4834	(Asn ⁶⁷⁰ ,Leu ⁶⁷¹)-Amyloid β/A4 Protein Precursor ₇₇₀ (667-676)	This peptide substrate corresponds to the ,Swedish' Lys-Met/Asn-Leu (K670N/M671L) mutation of the amyloid precursor protein (APP) β -secretase cleavage site. It has been used for assaying β -secretase activity

H-4838	(Val ⁶⁷¹)-Amyloid β/A4 Protein Precursor ₇₇₀ (667-676)	The peptide corresponds to the M671V mutation of the amyloid precursor protein (APP) β -secretase cleavage site. It has been used for assaying β -secretase activity but no detectable cleavage by the endogenous β -secretase could be observed
H-6216	Amyloid β/A4 Protein Precursor ₇₇₀ (740-770)	Amyloid $\beta/A4$ Protein Precursor ₇₇₀ (740-770) corresponds to a C-terminal amyloid precursor protein (APP) fragment known as C31. This fragment is intracellularly generated by proteolytic cleavage of APP by caspases-8 and -9. C31 had a proapop- totic and a cytotoxic effect on neuronal cells and was shown to be present in brains of Alzheimer's disease (AD) patients. In cultured cells caspase cleavage of APP was induced by amyloid β -protein and the subsequent generation of C31 contributed to the apoptotic cell death associated with amyloid β -protein. Amyloid precursor binding protein BP1 (APP-BP1) a cell cycle protein which is increased in AD brain was demonstrated to bind to the C31 region of APP and to mediate APP-induced apoptosis
H-7874	Amyloid Precursor Frameshift Mutant C-Terminal Peptide NEW	The sequence RGRTSSKELA corresponds to human APP frameshift mutant (339-348). RGRTSSKELA is used for genera- ting antibodies.

β-SECRETASE INHIBITORS

N-1815	Ac-Val-Met-[(2S,4S,5S)-5-amino-4-hydroxy-2-iso- propyl-7-methyl-octanoyl]-Ala-Glu-Phe-OH	Ac-VML-psi[CHOH-CH_2]-VAEF, a potent human β -secretase inhibitor with an IC_{50} of 20 nM containing the hydroxyethylene isostere of the Leu-Val motif
H-4848	(Asn ⁶⁷⁰ ,Sta ⁶⁷¹ ,Val ⁶⁷²)-Amyloid β/A4 Protein Precursor ₇₇₀ (662-675)	Amyloid precursor protein (APP) β -secretase from human brain cleaves full-length APP at the amino terminus of the amyloid β -protein (A β) sequence, thus leading to the generation and ext- racellular release of β -cleaved soluble APP and a corresponding cell-associated carboxy-terminal fragment. The subsequent cleavage of the C-terminal fragment by γ -secretase(s) leads to the formation of A β . This new peptide represents a potent subs- trate analog inhibitor of APP β -secretase with IC ₅₀ = 30 nM
N-1825	H-Glu-Leu-Asp-[(2R,4S,5S)-5-amino-4-hydro- xy-2,7-dimethyl-octanoyl]-Ala-Glu-Phe-OH	Glu-Leu-Asp-Leu-psi[CHOH-CH ₂]-Ala-Ala-Glu-Phe (ELDL- psi[CHOH-CH ₂]-AAEF), a potent inhibitor for human brain memapsin-2 (β -secretase) with a Ki-value of 0.3 nM. The hydro- xyethylene isostere of the Leu-Ala motif functions as a mimic of the transition state

N-1920	H-Glu-Leu-Asp-[(2R,4S,5S)-5-amino-4-hydro- xy-2,7-dimethyl-octanoyl]-Val-Glu-Phe-Gly-Gly- D-Arg-D-Arg-D-Arg-D-Arg-D-Arg-D-Arg-D- Arg-D-Arg-OH	N-1590	Z-Leu-Leu-4,5-dehydro-Leu-aldehyde
H-5108	OM99-2		

y-SECRETASE INHIBITORS

H-5106	[(2R,4R,5S)-2-Benzyl-5-(Boc-amino)-4-hydroxy- 6-phenyl-hexanoyl]-Leu-Phe-NH₂	N-1895	Z-Ile-Leu-aldehyde
N-1890	3,5-Difluorophenylacetyl-Ala-Phg-OMe	N-1695	Z-Leu-Leu-Nle-aldehyde

AMYLOID-LIKE PROTEIN 1 (APLP 1)

APLP 1 is a highly sensitive biomarker for the production of Aβ (1-42) derived from the βAPP-like protein APLP1. The peptide is generated by the same proteolytic mechanism as Aβ42. Non-amyloidogenic APL1β28 can be detected in the cerebrospinal fluid and its levels correlate with Aβ42 production. Its ratio to total APL1β (APL1β25, APL1β27, and APL1β28) is significantly increased in familial and sporadic cases of AD:

H-7306	APLP1-derived A β -like peptide (1-28)	H-7302	APLP1-derived Aβ-like peptide (1-25)
H-7304	APLP1-derived A β -like peptide (1-27)		

AMYLOID BRI PEPTIDES

Amyloid Bri Protein (1-34), encoded by the gene BRI located on chromosome 13, is deposited as amyloid fibrils causing neuronal dysfunction and dementia:

H-4728	Amyloid Bri Protein (1-34) (reduced)	H-5526	Amyloid Bri Protein (1-34)
H-5052	Amyloid Bri Protein (1-23)	H-5048	Amyloid Bri Protein Precursor277 (89-106)

AMYLOID DAN PEPTIDES

Amyloid peptide that is associated with dementia:

H-5298	Amyloid Dan Protein (1-34) (reduced)	H-5528	Amyloid Dan Protein (1-34)
--------	--------------------------------------	--------	----------------------------

AMYLOID P-COMPONENT PEPTIDE

A wide variety of cells attach to the surface of polystyrene plastic dishes coated with this peptide, which corresponds to a fragment of the amyloid P component, a glycoprotein found in all types of amyloid deposits:

H-2942	Amyloid P Component (27-38) amide	H-2944	Tyr-Amyloid P Component (27-38) amide
H-2946	Amyloid P Component (33-38) amide *		

*this fragment retains 83 % of the cell attachment activity of the dodecapeptide fragment (27-38) (H-2942)

ΝΟΝ-Αβ COMPONENT

The 35 amino acid peptide NAC (α-synuclein (61-95)) has originally been isolated from the insoluble core of Alzheimer's disease (AD) amyloid plaque. The sequence corresponds to a fragment of a 140 amino acid precursor known as NACP or α-synuclein and was found to form amyloid fibrils via a nucleation-dependent polymerization mechanism. Accumulation of NAC aggregates in the synapse might be responsible for the neurodegeneration in AD and in the prion diseases.

H-2598 Non-Aβ Component of Alzheimer's Disease

HUMANINS AND COLIVELIN

H-5574	Humanin (human)	H-6336	Colivelin
H-5576	(Gly ¹⁴)-Humanin (human)		

PRION PEPTIDES

H-1566	Prion Protein (106-126) (human)	H-4206	Prion Protein (118-135) (human)
H-4882	Prion Protein (106-126) (human) (scrambled)		

SUBSTRATES

L-1905	H-Lys-Thr-Glu-Glu-Ile-Ser-Glu-Val-Lys-Met-pNA	I-1625	Z-Val-Lys-Met-AMC
M-2650	Dansyl-D-Ala-Gly-4-nitro-Phe-Gly-OH		

DIPEPTIDES

G-2420 H-Ile-Phe-OH G-2525 H-Leu-Ile-OH

LIPIDS

0-1270 1-0-Hexadecyl-2-0-acetyl-sn-glycero-3-phosphocholine (PAF (C₁₆))

VARIOUS RELATED PRODUCTS

G-1015	Ac-Asp-Glu-OH (NAAG)	H-7804	TRAF-6 Peptide NEW
G-1250	L-Carnosine	H-7806	TRAF-6 Control Peptide NEW
H-3456	CRF (6-33) (human, rat)	H-2930	H-Gly-Pro-Arg-OH
H-8230	Galanin (human)	F-4235	H-D-Pen-OH
H-7450	Galanin (mouse, rat)	Q-1860	Phenserine
G-4430	(Des-Gly)-Glutathione-monoethyl ester (reduced) (GCEE)	N-1650	L-trans-Epoxysuccinyl-Leu-3-methylbutyl- amide-ethyl ester (E64d)
H-8430	PACAP-38	H-4076	Acetyl-Calpastatin (184-210) (human)
H-3988	Presenilin-1 (331-349)-Cys (human, mouse)	C-4275	1,3-Bis-(Z-Leu-Leu)-diaminoacetone NEW
H-5512	Secretoneurin (mouse, rat)	N-1490	Z-Pro-Pro-aldehyde-dimethyl acetal

RECOMBINANT SOURCE

H-5594 rec Brain-Derived Neurotrophic Factor (human)

Marketing & Sales Contact

Americas

Bachem Americas, Inc. Tel. +1 888 422 2436 (toll free in USA & Canada) +1 310 539 4171 sales.us@bachem.com

Asia Pacific

Bachem Japan K.K. Tel. +81 3 6661 0774 sales.jp@bachem.com

Europe, Africa, Middle East and India Bachem AG Tel. +41 58 595 2020

sales.ch@bachem.com

Visit our website www.bachem.com or shop online shop.bachem.com

All information is compiled to the best of our knowledge. We cannot be made liable for any possible errors or misprints. Some products may be restricted in certain countries.

www.bachem.com

shop.bachem.com