

Flow Cytometric Screening of a Kinase Inhibitor Library for **Apoptosis Induction** Julie M. Rumble and David L. Hoffman

Bioanalysis & Assay Development Services Group, Cayman Chemical, Ann Arbor, MI

KEYENDING Multiparametric screening of kinase inhibitor cytotoxicity distinguishes multiple modes of cell death.

Introduction

Traditional methods of detecting cytotoxicity of potential therapeutic compounds have relied on less sensitive methods, which are amenable to high throughput. These include detecting LDH release, tetrazolium salt reduction to formazan, and ATP. These methods can be useful, but finer understanding of the mechanism of cell death may be more helpful in developing effective therapeutics.

Fluorescent probes can detect many different components of cell death and have the advantage of being able to be multiplexed, given the proper analysis platform. Annexin V binds to externalized phosphatidylserine, a marker of apoptosis. DAPI is a nucleic acid dye, which is only internalized after the plasma membrane is compromised in necrotic cells. TO-PRO[®]-3 is trafficked into the cell early in apoptosis through pannexin channels. TMRE is fluorescent only in healthy mitochondria.

Flow cytometry has not traditionally been used as a screening tool due to low throughput. That is, samples are analyzed individually, and automation is frequently unreliable, thus Figure 1. A. An initial gate was drawn to enumerate necrotic cells (DAPI+). B. DAPI-negative cells were further gated demanding high user input. The MACSQuant[®] X has been developed to counter these on annexin V-positive and -negative cells. C. The annexin V-positive population was then gated using forward scatter issues and make flow cytometry significantly higher throughput. This flow cytometer to differentiate cells from apoptotic bodies and debris. **D.** The annexin V-negative cells were visualized in a histogram of TO-PRO[®]-3, in which positive cells were described as early apoptotic and negative cells were live. can analyze as little as 5 μ l of sample reliably, can automatically sample 384-well plates, and maintains the mutliplexability that makes flow cytometry an attractive tool for Heat Map Reveals Potentially Cytotoxic Compounds obtaining maximal information from each sample.

Methods

Jurkat cells were plated at 4 x 10⁵/well in two 96-well plates in complete medium and treated overnight with 1 μ M of compound from the Kinase Screening Library (Cayman Item No. 10505). Approximately 160 compounds are in this library, and the remainder of the wells were used as controls. DMSO was used as a vehicle control, and staurosporine (Cayman Item No. 81590) was used as a positive control. Cells were stained as described in the kit booklet for the Early Apoptosis Detection Assay Kit (Cayman Item No. 601360), using annexin V FITC, TMRE, and TO-PRO[®]-3. After staining, cells were washed, resuspended in PBS with DAPI, and transferred to 384-well plates in quadruplicate. Cells were analyzed in the 384-well plates using the MACSQuant[®] X flow cytometer with the following settings: Collect 15 µl sample, high speed, fast wash, shake the plate every 6 wells; collect data in channels V1, B1, B2, and R1. Using these settings, each 384-well plate was sampled in about 2.5 hours.

Cell Staining and MACSQuant[®] X Flow Cytometry Workflow

ltem No.	ltem Name	Live	Item No.	Item Name	Live	ltem No.	Item Name
10398	TG003	84.88	13341	LY364947	85.13	10010236	ML-9
11022	BIBF 1120	85.25	13812	17β-hydroxy Wortmannin	57.13	10010248	AG-17
11793	SB-505124	86.25	9000988	PD 166326	78.85	10010312	AG-82
13122	CHIR99021	85.78	10793	AG-879	79.43	10010466	SP 600125
13303	NSC 663284	85.23	11569	GSK1059615	76.18	10011249	CAY10576
13325	Iso-Olomoucine	84.28	13067	SB 203580	84.23	10008005	OSU03012
13601	ZM 447439	81.83	13298	Bisindolylmaleimide I	85.23	10007707	AS-605240
62575	N,N-Dimethylsphingosine (d18:1)	82.90	13318	KN-62	85.78	10009222	Sphingosine Kinase Inhibitor 2
10459	PKC 412	81.05	13344	SB 203580 (hydrochloride)	84.60	10010237	Triciribine
11029	SMI-4a	84.88	13838	CAY10626	84.10	10010249	H-8 (hydrochloride)
11811	INK128	79.85	10004914	O-1918	79.88	10010313	AG-99
13123	BIO	83.88	10954	1-NA-PP1	83.40	10010541	L-threo -Sphingosine (d18:1)
13305	D 4476	85.65	11609	Ruxolitinib	84.20		Control
13332	(S)-Glycyl-H-1152 (hydrochloride)	84.60	13108	VX-702	83.83	10010301	CAY10554
13622	AS-041164	84.43	13299	BisindolylmaleimideIV	84.93	10007907	Sphingosine (d18:1)
70920	1 1 2 9 4 0 0 2	82.88	13319	KN-93	84.38	10009366	Piceatannol
10460	Doramanimod	83.95	13371	CAY10621	83.93	10010238	Frhstatin analog
111/0		81.63	13873	SU 6668	83.68	10010255	LENJ-Δ13
12076	Capertinih (hydrochloride)	84.45	10005583	V-27632 (hydrochloride)	82.05	10010205	AG-213
12120	Imatinih (mosulato)	04.45	10005585	Torin 1	02.55 91 EE	10010514	H 80 (bydrochlorido)
10000		04.05 04.75	11659	Nocrostatin 1	84.00	10010550	
10000	NU 7020 Disindalulmalaimida VIII (asatata)	86.69	12100	Smodin	84.00	10011251	Control
13333	Bisindolyimaleimide VIII (acetate)	86.68	13109	Emodin Bisin de la la secieta de M	84.63	10000121	
13641	NVP-AEW541 (nydrochioride)	84.38	13300	Bisindolyimaleimide v	85.23	10008131	JNJ-10198409
/09/0	0-0126	83.58	13322	CGP 57380	83.25	10009557	SC-1
10461	Paclitaxel	59.48	13576	YM-201636	80.28	10010239	Kenpaullone
	Control	84.85	18218	PHA-767491	84.28	10010267	SC-514
13031	SB-431542	84.98	10006148	Leelamine	82.95	10010315	AG-183
13159	Sunitinib (malate)	83.50	10006726	PD 98059	84.63	10010559	HA-1077 (hydrochloride)
13311	Gö 6983	85.30	10009052	AS-252424	85.60	10011255	NSC 210902
13334	Bisindolylmaleimide IX (mesylate)	86.80	10010175	AS-604850	85.10		Control
13643	PP242	81.60	10010244	AG-1478	85.28	10008614	Leelamine (hydrochloride)
81590	Staurosporine	0.90	10010309	RG-13022	84.98	10009569	(R)-Roscovitine
10483	Erlotinib	83.80	10010399	SB 202190	83.95	10010240	Olomoucine
11314	Chelerythrine (chloride)	85.38	10011246	WHI-P131	82.58	10010275	Apigenin
13032	PD 173074	85.53	10012591	CCT018159	79.98	10010329	Lavendustin C
13166	Gefitinib	84.98	10006727	PD 169316	84.85	10010568	AG-370
13312	H-9 (hydrochloride)	85.15	10009078	CAY10505	84.73	10011256	CAY10577
13337	ST638	85.30	10010177	PI3-KinaseαInhibitor 2	85.55		Control
13653	ABT-869	84.45	10010246	SB-216763	86.68		Control
	Control	83.55	10010310	RG-14620	85.45	10009644	Sorafenib
10565	NVP-BEZ235	74.73	10010400	CAY10571	85.30	10010242	AG-494
11445	Tunicamycin	67.13	10011247	CAY10574	82.03	10010300	AG-18
13033	Valproic Acid (sodium salt)	83.83	10012600	Myricetin	78.50		Control
13198	PP2	84.98	10007349	, TGX-221	85.10	10010591	Wortmannin
13314	Indirubin-3'-monoxime	84.68	10009209	PI-103	85.45	10011264	CAY10578
13338	SU6656	84.85	10010233	CAY10567	85.43		Control
13687	CAV10622	84 33	10010247	SB-415286	86.93	10008618	Lauric Acid Leelamide
<u>1900</u> ,	$\Delta S - 605240$ (notassium salt)	82 98	10010247	ΔG-490	86.28	10010012	
10725	Phthalazinone pyrazole	82.90	10010311	Nilotinih	85.22	10010043	AG-825
11/01	AZD 7762	25 72	10010422	Control	91.60	10010243	
12021		94.09	10527	Nocrostatin 5	72.00	10010302	5-lodotuborcidin
12024	2 Mathuladanina	04.08	10007652	$1 \times 1 \times$	70.90	10010575	
10242		85.50	10007653		83.10	10010592	
1331/	NU 6102	84.08	10009210	PIK-75 (hydrochloride)	2.29	10012431	PD 184161

Figure 2. The percentage of the total population falling into the "live" (DAPI-, annexin V-, TO-PRO®-3-) category was used to flag cytotoxic compounds (blue: live, red: dead). The average of the DMSO and staurosporine-treated controls was 83% and 1.6%, respectively.

Further Analysis of Potentially Cytotoxic Compounds

15.075

12.425

8.295

8.47

7.3525

6.4875

20.425

em No.	ltem Name	Live
0461	Paclitaxel	59.4
1590	Staurosporine	0.90
0565	NVP-BEZ235	74.7
1445	Tunicamycin	67.1
1491	AZD 7762	35.7
3812	17β-hydroxy Wortmannin	57.2
1569	GSK1059615	76.2
0009210	PIK-75 (hydrochloride)	2.29
0010248	AG-17	76.2
0008131	JNJ-10198409	55.6
0009557	SC-1	75.6

3.4775 12.125 3.89 15.325 1.14 12.675 5.545 Figure 3. This heatmap shows the percentage of the total population within each of the indicated gates. Colors represent the deviation from the vehicle-treated cells (blue: within 3 SD of vehicle-treated cells; red: value of staurosporine-treated cells). Among the eleven flagged compounds, only staurosporine and PIK-75 (hydrochloride) were nearly completely cytotoxic, with most of the cell death being necrotic (>50% DAPI+). The remainder of the cytotoxic compounds induced highly mixed and variable populations, suggesting different mechanisms of cytotoxicity. For example, paclitaxel, JNJ-10198409, and 17β-hydroxy wortmannin were equally cytotoxic overall (around 60% live), but paclitaxel and JNJ-10198409 tended to induce more early and late apoptotic responses, while **17β-hydroxy wortmannin** induced much more necrosis in these cells. In most cases, when TO-PRO[®]-3 was higher than average, annexin V was also higher than average, providing support that these independent markers measure related processes in apoptosis. However, in a few cases (e.g., NVP-BEZ235), the percentage of cells which were TO-PRO[®]-3-positive was above average while the annexin V percentage was below average.

Apoptoti

3.91

3.47

1.08

4.01

1.55

10.83

0.47

10.975

68.575

13.825

26.575

29.975

11.825

55.775

16.4

11.1

TMRE Staining of Treated Cells

ltem No.	ltem Name	Live	Early Apoptotic	Necrotic	Apoptotic
10461	Paclitaxel	59.48	15.075	10.975	3.91
81590	Staurosporine	0.90	12.425	68.575	3.47
10565	NVP-BEZ235	74.73	8.295	11.1	1.08
11445	Tunicamycin	67.13	8.47	13.825	4.01
11491	AZD 7762	35.73	18.625	26.575	4.96
13812	17β-hydroxy Wortmannin	57.13	7.3525	29.975	0.69
11569	GSK1059615	76.18	6.4875	11.825	1.55
10009210	PIK-75 (hydrochloride)	2.29	20.425	55.775	10.83
10010248	AG-17	76.13	3.4775	16.4	0.47
10008131	JNJ-10198409	55.63	15.325	12.125	3.89
10009557	SC-1	75.60	5.545	12.675	1.14

Figure 4. The addition of TMRE staining (last column, percent of control-treated cells, blue: percentage of cells TMRE+ in vehicle, red: percentage of cells TMRE+ in staurosporine) to the apoptotic stains in this screen allows for the concomitant analysis of the health of the mitochondria, elucidating potential mitochondrial toxicity. While several compounds shown to induce apoptosis predictably had low levels of TMRE positivity, one stood out. Notably, AG-17 showed lower than average apoptosis induction, average necrosis levels, and almost no TMRE staining, suggesting a profound uncoupling of the mitochondria without direct induction of the apoptotic pathway. This conclusion is supported by literature describing mitochondrial disruption by AG-17 in the low micromolar range.¹

Conclusions

- Eleven compounds in the kinase screening library induced significant cell death.
- By analyzing the mode of cell death using the Early Apoptosis Detection Assay Kit (Cayman Item No. 601360), we were able to determine that there are differences in the way that each of these compounds kills, which may affect their therapeutic efficacy.
- We have shown, using the high-throughput MACSQuant[®] X Flow Cytometer by Miltenyi, that a library of compounds can be screened efficiently and accurately by flow cytometry.

Reference

1. Burger, A.M., Kaur, G., Alley, M.C., et al. Tyrphostin AG17, [(3,5-Di-tert-butyl-4-hydroxybenzylidene)-malononitrile], inhibits cell growth by disrupting mitochondria. Cancer Res. **55(13)**, 2794-2799 (1995).

Learn what our Bioanalysis & Assay Development Services team can do for you www.caymanchem.com/bioanalysis

